12 research outputs found

    Collective oscillations in spatially modulated exciton-polariton condensate arrays

    Full text link
    We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k0=0k_0=0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers.Comment: 9 pages, 3 figure

    Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem

    Full text link
    The Fermi-Pasta-Ulam problem was one of the first computational experiments. It has stirred the physics community since, and resisted a simple solution for half a century. The combination of straightforward simulations, efficient computational schemes for finding periodic orbits, and analytical estimates allows us to achieve significant progress. Recent results on qq-breathers, which are time-periodic solutions that are localized in the space of normal modes of a lattice and maximize the energy at a certain mode number, are discussed, together with their relation to the Fermi-Pasta-Ulam problem. The localization properties of a qq-breather are characterized by intensive parameters, that is, energy densities and wave numbers. By using scaling arguments, qq-breather solutions are constructed in systems of arbitrarily large size. Frequency resonances in certain regions of wave number space lead to the complete delocalization of qq-breathers. The relation of these features to the Fermi-Pasta-Ulam problem are discussed.Comment: 19 pages, 9 figures, to appear in Am. J. Phy

    q-Breathers and the Fermi-Pasta-Ulam Problem

    Full text link
    The Fermi-Pasta-Ulam (FPU) paradox consists of the nonequipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number qq. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here qq-Breathers (QB). They are characterized by time periodicity, exponential localization in the qq-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.Comment: 4 pages, 4 figure

    q-breathers in Discrete Nonlinear Schroedinger lattices

    Full text link
    qq-breathers are exact time-periodic solutions of extended nonlinear systems continued from the normal modes of the corresponding linearized system. They are localized in the space of normal modes. The existence of these solutions in a weakly anharmonic atomic chain explained essential features of the Fermi-Pasta-Ulam (FPU) paradox. We study qq-breathers in one- two- and three-dimensional discrete nonlinear Sch\"{o}dinger (DNLS) lattices -- theoretical playgrounds for light propagation in nonlinear optical waveguide networks, and the dynamics of cold atoms in optical lattices. We prove the existence of these solutions for weak nonlinearity. We find that the localization of qq-breathers is controlled by a single parameter which depends on the norm density, nonlinearity strength and seed wave vector. At a critical value of that parameter qq-breathers delocalize via resonances, signaling a breakdown of the normal mode picture and a transition into strong mode-mode interaction regime. In particular this breakdown takes place at one of the edges of the normal mode spectrum, and in a singular way also in the center of that spectrum. A stability analysis of qq-breathers supplements these findings. For three-dimensional lattices, we find qq-breather vortices, which violate time reversal symmetry and generate a vortex ring flow of energy in normal mode space.Comment: 19 pages, 9 figure

    The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging

    Get PDF
    Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research

    The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging

    Get PDF
    Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks—e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called “seven pillars of aging” combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research

    q-breathers in finite two- and three-dimensional nonlinear acoustic lattices

    Full text link
    Nonlinear interaction between normal modes dramatically affects energy equipartition, heat conduction and other fundamental processes in extended systems. In their celebrated experiment Fermi, Pasta and Ulam (FPU, 1955) observed that in simple one-dimensional nonlinear atomic chains the energy must not always be equally shared among the modes. Recently, it was shown that exact and stable time-periodic orbits, coined qq-breathers (QBs), localize the mode energy in normal mode space in an exponential way, and account for many aspects of the FPU problem. Here we take the problem into more physically important cases of two- and three-dimensional acoustic lattices to find existence and principally different features of QBs. By use of perturbation theory and numerical calculations we obtain that the localization and stability of QBs is enhanced with increasing system size in higher lattice dimensions opposite to their one-dimensional analogues.Comment: 4 pages, 5 figure
    corecore